From universal labeling tools that work great for every job, to customized tools for your very problem.
The core component of Supervisely has always been feature-rich labeling suites that solve numerous annotation tasks for diverse types of data, from images to 3D sensor fusion point clouds.
More than that, we introduced AI elements, such as Interactive AI assisted tools and AI-powered applications to streamline labeling even further.
While those methods work perfectly great for many of our customers, there is always a way for improvement, especially when it comes to less common tasks and areas.
Medical images with unusual formats, complex labeling pipelines from dozens of CCTV at once, multiple teams that require non-standard approach to labeling process organization — it's impossible to create one solution that would cover all possible scenarios.
Luckily, in Supervisely it's possible to build custom interfaces for any task without worrying of deployment, integration, format conversion and other boring things. Like Docker and Heroku simplified and standardized those questions, Supervisely Apps are doing the same for computer vision.
The task of labeling a video sequence with tags that describe actions and context is not an uncommon one. Supervisely comes with feature-rich video labeling suite that has video timeline, sequence tags any many more options for professional labeling.
But, one day we got a feedback from our customer:
Usually, it's a huge problem for some products that forces users to abandon it and switch to development of a custom in-house solution, tailored for their needs.
Luckily, this is not the case with Supervisely: built as OS for computer vision, we can efficiently create built-in interactive applications by using App Engine. As the result, we developed a dedicated Supervisely App with functionality that would perfectly fit our customer needs.
In another case the task was tagging again, this time of store shelves. The hard part is that each image has about 50-80 items that need to be labeled with a bounding box and assign an appropriate ID from the customer database of 10,000+ items.
While we could still use general-purpose image labeling tool, there are a number issues:
With the feedback above we were managed to reduce labeling time up to 20x times while maintaining the highest accuracy by introducing a set of applications that extend existing annotation UI.
A fully customizable AI infrastructure, deployed on cloud or your servers with everything you love about Supervisely, plus advanced security, control, and support.
Start 30 days free trial➔Supervisely provides first-rate experience since 2017, longer than most of computer vision platforms over there.
Join community of thousands computer vision enthusiasts and companies of every size that use Supervisely every day.
Our online version has over a 220 million of images and over a billion of labels created by our great community.
Speak with people who are on the same page with you. An actual data scientist will:
Get accurate training data on scale with expert annotators, ML-assisted tools, dedicated project manager and the leading labeling platform.
Order workforce